EMOTIONAL PRESENCE IN ONLINE LEARNING SCALE: A SCALE DEVELOPMENT STUDY
نویسندگان
چکیده
منابع مشابه
Scale-free online learning
We design and analyze algorithms for online linear optimization that have optimal regret and at the same time do not need to know any upper or lower bounds on the norm of the loss vectors. Our algorithms are instances of the Follow the Regularized Leader (FTRL) and Mirror Descent (MD) meta-algorithms. We achieve adaptiveness to the norms of the loss vectors by scale invariance, i.e., our algori...
متن کاملLarge Scale Online Learning
We consider situations where training data is abundant and computing resources are comparatively scarce. We argue that suitably designed online learning algorithms asymptotically outperform any batch learning algorithm. Both theoretical and experimental evidences are presented.
متن کاملapplication of brand personality scale in automobile industry: the study of samand’s brand personality dimensions
این تحقیق شخصیت برند سمند را در ایران با استفاده از مدل پنج بعدی آکر (1997) بعنوان یک چهارچوب بطور توصیفی سنجیده است. بنابر این چهارچوب که دراصل در 42 جزء (42 ویزگی شخصیتی) ودر پنج بعد شخصیتی طراحی شده بود ودر کشورها وصنایع مختلف آزموده شده بود, پرسنامه به زبان فارسی ترجمه شده و با استفاده از روشهای ترجمه معکوس و مصاحبه عمیق با 12 متخصص ایرانی به 38 جزء کاهش یافت. و نظرسنجی ای در پنج نمایندگی ا...
15 صفحه اولLarge Scale Online Kernel Learning
In this paper, we present a new framework for large scale online kernel learning, making kernel methods efficient and scalable for large-scale online learning applications. Unlike the regular budget online kernel learning scheme that usually uses some budget maintenance strategies to bound the number of support vectors, our framework explores a completely different approach of kernel functional...
متن کاملScale-Invariant Unconstrained Online Learning
We consider a variant of online convex optimization in which both the instances (input vectors) and the comparator (weight vector) are unconstrained. We exploit a natural scale invariance symmetry in our unconstrained setting: the predictions of the optimal comparator are invariant under any linear transformation of the instances. Our goal is to design online algorithms which also enjoy this pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Turkish Online Journal of Distance Education
سال: 2016
ISSN: 1302-6488
DOI: 10.17718/tojde.87040